
Object-oriented programming course revisited
Antti Herala

antti.herala@lut.f

Erno Vanhala
Lappeenranta University of Technology
Department of Innovation and Software

P.O.Box 20
FI-53851 Lappeenranta, Finland

erno.vanhala@lut.f

Uolevi Nikula

uolevi.nikula@lut.f
ABSTRACT
Teaching has faced challenges over the latest decades. It is easier
than ever to provide material for students and get returned
exercises and hold exams online. Besides technology and
platforms, also teaching methods need to adapt to the Internet-age
and its generation of people. In this article we present a case study
where an university level programming course was upgraded to fit
the needs of 2010s by introducing Java as the predominate
language and utilizing available technologies to enhance teaching.
This was done on both technological and pedagogical level,
introducing open data and flipped classroom to programming
education while the scope remained unchanged. This article
presents the first results of the new course. Based on the collected
student feedback, the use of Java and open data and
implementations of the flipped classroom teaching method are all
considered as a success.

Categories and Subject Descriptors
K.3.2 [Computer and Education]: Computer and Information
Science Education – computer science education.

General Terms
Management, Measurement, Documentation, Experimentation

Keywords
Flipped classroom, reversed classroom, programming, teaching,
Java, open data

 1. INTRODUCTION
Teaching programming has long had two sides in sense that

besides theoretical knowledge learning programming requires
getting hands dirty with the actual programming. Teaching in
universities has met paradigm shifts over the decades and the
latest occurred when lecturing and providing material became
available via the Internet. Besides pedagogical issues there is
always the question what programming languages and integrated
development environment one should use [6, 34]. Furthermore,
the industry has its own special expectations, and universities
teaching engineers are keen on meeting these expectations [13].

In addition to technical selection there is also the pedagogical
aspect and although lecturing has been effective way to teach
students since the dawn of universities it does not mean that there
would not be better ways. The flipped classroom method where
lectures are replaced with self-study material has been gaining
popularity in several areas of education [42, 57] including the
teaching of programming [27, 36].

As our university in Finland decided to change the length of a
semester from fourteen to twelve regular teaching weeks and the
shift from a Nokia-driven industry to a land of computer game
companies brought us the option to change the programming
language and improve the course. We decided to re-evaluate all
the fundamental elements of the course, including language, tools
and teaching methods.

This study focuses on the context of programming, especially
experiences of running a programming course, where the teaching
focuses on practical education instead of delivering the theory.
Students with adequate knowledge about basic programming
should understand the theory mostly by themselves but require
guidance with practical implementations, regardless of the
language used.

In the end this case study is looking for an answer to the
questions what are the existing recommendations to teach
fundamentals of object-oriented programming and how they
suited our course? This article also presents the results of the first
implementation of the course.

 2. RELATED RESEARCH

 2.1 Object-oriented versus other paradigms
Object-oriented programming (OOP) paradigm builds on

objects [7]. The complexity to teach object-orientation is
emphasized by the concepts of objects-first and objects-later, a
division started by the publication of Computer Curricula 2001
[53], where objects-first was officially introduced as a formal
method for education. The approach to object-oriented education
has been studied a lot [6, 10], yet studies [14, 15] argue how the
difficult concepts are difficult despite the method.

While the object-oriented paradigm was introduced as early as
in 1970s [7], it started to make its way to programming education
as late as in the 90s [11]. In the early 21st century and later, the
researchers around programming education have developed
models and guidelines for the course structure and topics. Based
on the previous research, multiple tools have been considered for
the new course, such as a model-driven approach [3], game-based
design [8] and a checklist for grading [51]. In this study the
guidelines for an object-oriented programming course [34] are
considered to serve as the basic structure, because they give the
freedom to select components of the course independently without
the need to follow a strict set of rules. The guidelines and their
descriptions are presented in Table 1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
Koli Calling 2015, November 19-22, 2015, Koli, Finland
© 2015 ACM. ISBN 978-1-4503-4020-5/15/11…$15.00
DOI: http://dx.doi.org/10.1145/2828959.2828974

 2.2 Programming language and IDE for
object-oriented programming

Needs from the industry, pedagogical guidelines, available
teaching material and teachers’ own experiences and skills make a
mix that leads to variety of courses and programming languages
[44]. One of the most heated questions in computer science
education is the selection of a programming language for the
course, whether it is a basic CS1 course or more advanced
programming course. The programming languages used in
programming courses can have an impact to the programmers
career and especially their advancement while studying [13].
There exists also global (e.g. the increase of web and mobile apps
[20, 25]) and local factors (e.g. presence of a major employer,
such as Nokia in Finland or Samsung in South-Korea) that affect
the decision of which programming languages and tools are taught
[49]. The balance that the educators strive to find is between the
demand from the industry and the necessary functionalities for
academic purposes. While the educators would rather see a
programming language that is pedagogically the most suitable for
learning [13], the language is usually selected based on the
demand from the industry [49]. Various surveys point out how C,
C++ and Java have been the most widely used programming
languages in the educational landscape [44, 47, 48], similarly to
the industrial preferences as statistics show [46, 54, 56].

Just like for the methods to teach object-orientation, the
language for the course has been discussed in many publications.
The selection criteria vary from a specific, heuristic model [50] to
criteria based evaluation [28]. The requirements are presented in
Table 2 with explanations.

 2.3 Flipped classroom method
The technological development has allowed the education

methods to improve. One of such methods is the flipped
classroom (a.k.a. reversed classroom), that was initially developed
and used in economics [35]. The gist of the method is to allow
students to study the theory outside class with computer-assisted
tools and concentrate on practicing in class with the instructor.
The method is argued to allow students to adapt their individual
study patterns to the material and they are not required to be
present at traditional one-to-many lectures [4].

In recent years the flipped classroom has acquired more
visibility in the educational landscape as it has been used to teach

topics in mathematics [1, 37], biology [42], introductory business
[52], industrial engineering [57], mechanical engineering [40] and
computer science both in introductory [27, 36] and advanced
levels [21, 38].

The use of flipped classroom has been experienced positively
by students, giving positive feedback about the method used [38];
at the same time the learning results have also improved [40].
While the results have been mostly positive, studies show that the
acceptance-level from students is not unanimous [19] and the
learning results do not always improve [21].

 2.4 Open data in education
Openness is defined by Open Definition [43] as “Open data

and content can be freely used, modified, and shared by anyone
for any purpose”. Following the definition of openness, open data
is defined by Open Data Institute [58] as “Open data is data that
anyone can access, use and share”.

Table 1. Guidelines for OOP course [34]

Guideline Description

Objects first Object should be taught as early as possible.

Don’t start with
blank screen

Students should start by making small changes
into existing code by using a code skeleton.

Read code
Students can learn by reading well structured
programs and imitating styles and idioms.

Use “large”
projects

The example programs should be large from
student’s perspective.

Don’t start with
“main”

The main()-function has no relation to object-
oriented programming, it is only a point of
communication from Java to operating system.

Don’t use
“Hello World”

“Hello World” does not present OOP and the
use of objects is not clear for students.

Show program
structure

The relation between objects, classes, and the
structure should be visually presented.

Be careful with
the UI

GUI is an easily distracting component of a
program and not relevant to OOP.

Table 2. Requirements for programming language in object-oriented education [32]

Requirement Explanation

Clear concepts The language should be implemented with enough abstraction so it does not contradict with the teaching.

Transition to other
languages

The language enables students to understand programming concepts instead of an exact programming language.

High level Tasks available to be executed by the compiler or the runtime environment should be automated.

No redundancy The language should have one solution per problem. Different tools to solve same problems adds confusion.

Pure object-orientation The language should only support object-orientation and should not permit other programming paradigms.

Readable syntax The syntax should be easy to read and comprehend.

Safety Errors can be easily and automatically detected. The error messages should be clear and easy to interpret.

Simple object model The execution and object allocation should be easy to understand step by step, even for a beginner.

Small The language should be as compact as possible, but still powerful enough to be usable in education.

Suitable environment The environment should support multiple operating systems and the object-oriented paradigm.

Correctness assurance Students should be aware of the software engineering principles and the language should support them.

The link between data and research has been noticed in
industry and open data has had a large impact on university
research [45]. This has led the researchers to understand, that the
open data may not be only relevant to research but to education as
well [5, 16].

The connection of open data and education is usually
understood as open educational resources (OER) and rarely as a
tool to enhance learning [29]. However, some definitions of OER
contain all of the open materials used in classes, which could
technically cover open data as well [22]. Following the idea
behind OER, open data can be used to enhance learning through a
common platform, that connects public bodies with universities,
such as museums to cultural heritage studies [16]. The use of open
data is a two-way symbiosis: the data is used to educate students
about the real life situations they require for their studies but at the
same time they validate and curate the existing data [5].

 3. RESEARCH PROCESS
The data used in the study comes from the third programming

course (CS3) held at Lapppeenranta University of Technology
(LUT), Finland, between 2010 and 2014. In this paper the results
focus on the differences between years 2010-2013 and 2014,
where the major change was made. Data was collected from
various sources: each course included a final survey that was
distributed to all students enrolled in the course, approximately
half of the programs the students developed during these courses
have been stored in the database of a virtual learning environment
(VLE), and teacher also kept statistics on course projects and their
problems. The final surveys have included quantitative questions
such as the difficulty and usefulness of different course
components (e.g. lectures and course project) but also open
questions were available to enable students to give both positive
and negative feedback on the topics they saw important.

In general the study had three objectives: First, to report
internal and external reasons to reconstruct the course. Second, to
demonstrate how the chosen tools and methods can be used to
improve the course. And third, to report how the course was
remodeled in 2014 and how it was received by students. Thus the
study has the characteristics of both natural and design science
[39] but it is reported as a case study since the case study methods
[59] fit well the study. Case studies aim to understand the problem
under investigation thus the repeatability and generalizability can
be low but discoverability and representability high [18].

Meyer (2001) present choices (selection of cases, sampling of
cases, unit of analysis, sampling time, sampling business areas,
and divisions, and sites) that need to be considered when
designing a case study [41]. In addition Meyer (2001) also
presents options for data collection procedures, data analysis, and
validity and reliability. These are discussed here shortly.

As this is a single case study the selection of cases choice is
considered straightforward as we are reporting the object-oriented
programming course held in Lappeenranta University of
Technology during the years 2010 - 2014. The same happens with
sampling of cases as we have only one case and it presents a case
that could be replicated all over the world thus the sampling is
also straightforward. Meyer (2001) continues pointing out how
the unit of analysis can be selected so that there are various units
under observations thus controlling the researchers’ and
respondents’ bias. In our study we are not focusing only on topic
of interest but researching out several key issues. To issue
sampling time we utilized approach where we used data collected
after every iteration of the course. Sampling business areas,
divisions, and sites is not considered relevant in our study as we
are studying only one course with 5 iterations, so these samplings

would be useful if we had wider data sources including for
example geographical, time, or size variations.

For selection of data collection procedures we utilized course
feedback survey, which gave us both quantitative and qualitative
data. In addition teacher gave us his data on how much time he
had spend on various teaching tasks and how he saw the course
evolution. For data analysis we used spreadsheet program to
calculate averages and other key figures as suggested by Fink
(2013) [17]. Validity and reliability presented by Meyer (2001) is
discussed in the end of Discussion section.

 4. CASE STUDY
In our university the curriculum has been that CS1 and CS2 are

taught with Python and C respectively and both courses use
procedural paradigm. The first programming course in the second
year is taught completely with objects and this case study presents
how the new version of the course was constructed and what kind
finding did we recognize when running the first implementation
of the course. Students do not have any previous knowledge about
objects and their interactions; they’ve used objects only as data
storages with Python in CS1. Similarly methods are only known
from use of methods of existing objects, such as string methods in
Python.

 4.1 The previous version of the course
The Object-Oriented Programming course has had multiple

lectures and assistants over the years and they have emphasized
different topics and tools in the course. The focus has still always
been to teach object-orientation with C++ for the second year
students who have the basic knowledge and understanding of
programming as they have passed CS1 and CS2. The goals of the
course for the students were as follows: “Student learns to use
object-oriented programming methods to solve typical
programming problems and familiarizes himself with C++ and its
features in programming. Student knows how to read and describe
C++ code”.

The course syllabus consisted of three main parts: object-
oriented lectures, C++ lectures and their hybrid. The pure object-
oriented lectures focused on objects and classes, inheritance,
interfaces and object-oriented design with programming
examples. The C++ lectures focused on variables, pointers,
references, functions, namespaces, and C++ models with standard
template library (STL). The hybrid lectures were focused on
copying and assignment, exceptions, and error handling.

The course was built traditionally based on weekly lectures and
exercises. In paper both sessions took up to 90 minutes, while
lectures were usually shorter and exercises longer than allocated.
In addition to physical lectures, the lectures were also recorded
and shared as video via YouTube (in 2013) or as downloadable
video and audio file (before 2013). The course also had a course
book, that was not referenced in the lectures and was up to
students to read. In addition to weekly exercises, the course had a
larger project, that the students were expected to complete before
the final exam. In the project, pair working was allowed and
encouraged, leading to most of the students completing the project
in pairs.

Since 2010, the lecturer had not changed and thus, the
improvements and their possible impacts had been systematically
documented. In Table 3 the previous, incremental changes made
to the course are elaborated. The changes have always followed
the student feedback and the lecturer’s observations to make the
course more and more interesting. However, the course has not
been changed for the sole purpose of changing something and for
example in 2012 there was no changes from the previous year.

 4.2 Needs for the change
The object-oriented programming course had been taught with

C++ for more than ten years and basically the only radical change
happened in 2009 when the calendar length of the course was
increased from seven to fourteen weeks. The external factors had
changed since the beginning of this millennium and for example
the shutdown of Symbian development in Nokia and growing
computer game industry [25] changed the need of programming
skills from C++ to include various other languages.

The original C++ course did not have any mandatory GUI
design part, but today major of the software is used through GUI.
Students got extra points when they returned course projects with
GUI but they needed to learn the tools and techniques by
themselves. Besides a clear need for a graphical user interface the
course required some connections to real life situations. Open data
has been lately introduced to software industry [12], when
governments have been starting to publish data sets they have
collected over the decades. This allow software developers to get
the data for free and build their applications on the base that
already exists instead of starting to collect data by themselves. It
was considered to be a relevant improvement to the course’s
connection to the real life software engineering work and thus we
decided to utilize various freely available data sources.

At the same time the university policy-makers decided to
rethink teaching periods in 2013 and since 2014 the course had
calendar time twelve standard teaching weeks with the option to
build special events in intensive weeks where teaching can be out
of normal schedule.

Although the course had gained a lot of positive feedback, it
was clear that it had many outdated aspects that could be
improved, one being the fact that some lectures were focusing
purely on the programming language, not object-orientation.
While the feedback was positive, students rarely participated in
lectures and they also skipped exercises, since they were not
mandatory and did not accumulate any points for them. All the
issues lead to decision to completely reconstruct the course.

 4.3 Selection of new tools, techniques and
methods

In the very beginning of the upgrade process people
responsible of the upgraded course discussed that flipped
classroom method might be a valid method to try out, especially
since the existing research supports utilizing the method in
programming courses [27, 36]. It was decided that traditional
lectures would be replaced with short video recordings and the
effort would be focused on exercises. It was realized that it might
bring problems and resistance might rise. Another point to discuss
with the classroom flip was the possibility to use external, existing
lecture videos instead of creating all from scratch, a strategy
presented by Maher et al. (2015) [38]. Baldwin (2015) suggests
lecture videos should be custom made to provide as much aid to
students as possible.

The second issue to consider was the programming language.
As the emphasizes of the industry had shifted in the local area
there was also possibility to change programming language from
C++ to some other. To select a language for the new course in
LUT, a set of 11 requirements [32] were used to evaluate multiple
languages. The languages had to fill at least one condition to be
evaluated: the language was used by students before this course, it
should support object-orientation as much as possible or it should
have a considerable market segment. The selected languages and
the review can be seen in Table 4.

Students have been familiarized to Python in the first
programming course from the procedural point of view. While
being the best language for this course in the mapping, it is a risky
choice to consider, since the language does not enforce object-
orientation. The second place in the Table 4 is taken by Java,
which is a language designed for object-orientation and is also
relevant to the software industry.

Java is currently a popular language and it is supported by
multiple popular IDE’s. There are currently only two relevant free
and open source programming environments to be considered,
that are in wide use in the industry: Eclipse and Netbeans.
Netbeans is supported by Oracle, which releases versions of Java

Table 3. Development of OOP course 2010-2013

Year Changes

2010

New lecture slides and programming examples were
created and the lectures were video recorded. The
lecturer used Linux operating system with a simple text
editor, while students made tasks in Windows.

2011

The tasks were done using Linux and the text editor was
replaced with NetBeans IDE in both lectures and
exercises. Students were also given the freedom to
choose different IDE. A graphical user interface (GUI)
example with Qt was included into the course. The
lectures were offered in video format and in mp3-format.
Non-mandatory essay was added as a bonus.

2012 The course remained the same from the previous year.

2013

The recordings of the lectures were uploaded into
YouTube, so students could watch the lectures with any
device. Students were introduced to a lecture bingo [55]
that students could play while listening the lectures. The
GUI example was expanded from previous years and
students were encouraged to use version control,
introduced in CS2. It was not mandatory, but was
awarded with extra points. The project could be returned
by sharing a repository with the lecturer.

Table 4. Our survey of the languages based on framework
presented in [32] (x=covers)

P
yt

h
on

C
+

+

C
#

Ja
va

S
m

al
lt

al
k

E
if

fe
l

Clear concepts x

Easy transition to other languages x x x x

High level x x x x x

No redundancy x x x x x

Pure object-orientation x

Readable syntax x x

Safety x x x

Simple object/execution model x x x x

Small x x

Suitable environment x x x

Support for correctness assurance x x x x x x

Σ 9 3 5 8 5 6

and Netbeans simultaneously, ensuring continuous support. This
simultaneous release and easiness to install at the same time
makes Netbeans favorable over Eclipse, allowing students an
easier setup by themselves.

 4.4 Created materials
In support of the flipped classroom method, the course had

multiple lecture videos. The videos were constructed to present
one topic per video and each lecture video was constructed to last
only 15-30 minutes, as advised in [21, 60]. However, some
lectures were longer. This happened with for example UML, since
there was no reason to divide one topic into multiple parts.

To provide students text-based material, custom made manuals
in Finnish were added to the course. CS1 and CS2 in LUT have
custom made manuals to support learning and they have been
found useful [30], so it was reasonable to build manuals for the
third course too. The manuals were divided into two major topics:
object-orientation and practical software development.

The first manual presented object-orientation as objectively as
possible, providing examples with Java [23]. The language
constraints were ignored, the manual presents, for example, how
and why destructors are made, while Java does not support
destructors. Each section in the manual had the object-oriented
concepts presented, if necessary, with code and each section ended
with Java tutorials about the week’s main topics. Some of the
sections were more about programming than object-orientation,
such as the section about libraries and data streams or reading data
from the Internet, but they were necessary for basic object-
orientation and therefore included in the first manual.

The second manual concentrated more on the software
development, spanning over topics like version control, XML and
GUI development [24]. In the manual were also sections about
open data and developing map-based programs. Practically the
second manual consisted of topics that were used in the new
course project: open data as the data source, XML as the data
structure, GUI as the interface, programs with geolocation data,
and version control as the teamwork tool used also to return the
project to the teacher.

 4.5 Syllabus for the new course
In the new syllabus, the focus is being kept in object-

orientation and Java is taught only when necessary. The advantage
of short video lectures is the possibility to concentrate on one
topic at a time. This way the teaching about the language can be
separated from the more theoretical lectures, leaving more room
to the theory. In Table 5 the new syllabus is presented with
additional information about the length and number of the lecture
videos.

The new course was built using the set of 11 guidelines
presented in Section 2. In Table 6 the guidelines are reported and
their effects on the new course are described. Some guidelines are
followed more strictly than others, because of some limiting
factors and necessary tool initializations.

Table 7 presents a comparison of the old course and the new
version. The switch to flipped classroom teaching method
removed the physical lectures and introduced shorter educational
videos and two programming manuals instead. The voluntary
exercise tasks and VLE tasks were replaced with compulsory
weekly tasks from which student must get at least 10 points out of
22. Where previous years weekly exercises were composed of one
big task the new course had five smaller tasks every week. The
main idea was to first build simple application and then increase
its features. For example, in week 10 the first task was to build a
program that shows the university web page in a webview

component. Then it was improved and in the task five student had
build a web browser with support for local and Internet files
featuring back, forward and reload buttons. As there was
programming tasks that included designing and implementing
graphical user interface, no suitable automatic inspection method
was found but instead it was decided that students need to present
their solution in the exercises to earn points. This solution also
reduced the risk of plagiarism as students really needed to
understand their programs to demonstrate the functionalities and
features.

The previous version of the course did not include mandatory
GUI tasks. Qt was demonstrated shortly as a recommended GUI
library and some students added GUI to their course project. The
first half of the course contained material for learning basic
object-oriented concepts. The purpose of the second half was to
enhance the basics with GUI. For example, in week 3 the task was
to construct soda machine simulator from where one could buy
soft drinks. In week 8 the program logic remained the same but
the task was to build a new graphical user interface with JavaFX.

The larger programming project concentrated to the use of open
data. Using open data set borders for the topic. The main concept
was to apply maps as the basic functionality. To reach the goal of
course project, the data had to be specific and useful enough. The
project materialized as a postal office simulator, that relied to self-
service machines. To motivate the students, the project
concentrated on the map of Finland. To this map, students added
visualization about the self-service machines available. The data
source is open and accessible through Internet, provided by the
manufacturer. To add functionality, the user could send objects in
different postal packages between machines.

Table 5. New course syllabus

Content Videos (sum)

1 Introduction to OOP and course’s tools 27:06, 12:19, 2:54,
18:38 (1:00:57)

2 Java and objects, user I/O and methods
in Java

39:57, 22:52, 17:40
(1:20:29)

3 Data structures in Java, more about
OOP, variables and constants, operations

24:58, 10:35, 11:41,
28:36 (1:15:50)

4 File I/O, serialization and libraries 10:49, 19:50, 16:28
(47:07)

5 Object-based design with UML and
unit testing

51:48, 20:31, 34:53
(1:47:12)

6 Inheritance, abstraction (abstract
classes/interfaces) and polymorphism

33:59, 16:20, 30:41
(1:21:00)

7 Basics of building a GUI 24:43, 39:04
(1:03:47)

8 Class variables and methods 27:48

9 Object-based design philosophy, errors
and exceptions, Java, Internet, and XML

9:32, 38:30, 40:40
(1:22:42)

10 Generics in Java, iterators and their
uses, connecting Java-program to Internet

13:01, 30:25 (26:19)

11 Basics about inner and anonymous
classes, theory of copy and assignment

5:38, 37:24 (43:02)

12 Going over the material for the exam. 0 / 0:00

The previous version of the course provided all the materials in
static web pages. The lecture slides, demo examples and videos
were links to files in university servers. The new course changed
this by publishing the material through external services. The
slides were in Google Drive, demo codes in a Git repository and
videos in YouTube. Exam on paper was replaced by an online
exam but the traditional paper exam was also an option, if
students preferred it. The paper exam followed a strict schedule
while the online exam gave more freedom. The online exam could
be done with any computer on a given time interval. The students
who took the online exam had a two hour time slot to finish the

exam. The time restriction was necessary to discourage plagiarism
and group work in individual exams.

 4.6 Results
The university requires mandatory feedback collection from

every course. The Object-oriented programming course had
earned quite high average grade as Table 8 illustrates. Although
everything was changed the total grade was still the highest ever.
The measurements focus on the student satisfaction and the
learning environment, both quantitatively and qualitatively.

Students opinions on all the components in the course were
asked quantitatively. Their graded usefulness are presented in
Figure 1. By offering the exercises as the only in-class activity,
their reported usefulness increased significantly.

The course started with a short lecture in September 12th,
introducing the schedule and methods. The first exercises were
held on 15th and every Monday after that with the exception of an
exam week in mid October. Students were able to come in the
exercise sessions to show their weekly progress. The new lecture

Table 7. Old version and new version of the course

Old course New course

Lectures Physical and video
recorded lectures, 60-
90 min / week

31 short educational
videos

Exercises 90 min 90 min

Exercise tasks Voluntary, no points
earned

Compulsory to
achieve 10/22 points

Data sources Self-generated Self-generated and
open data

Returning
method

VLE
VLE and physical
demonstration

GUI No, Qt was only
shortly demonstrated

JavaFX

Use of version
control (VC)

Use of VC provided
extra points

Mandatory when
returning the course
project

Supplementary
material

Lecture slides
Two manuals and
lecture slides

Example code From university VLE
as a zip-file

From a git repository
in Bitbucket

Exam On paper Online (or on paper)

Table 8. Course average grade from students (1=lowest,
5=highest)

2010
(N=19)

2011
(N=18)

2012
(N=19)

2013
(N=14)

2014
(N=19)

Average grade
for course

4.00 3.94 4.37 4.36 4.47

Figure 1. The usefulness of course’s components (1=useless,
5=useful)

2010 2011 2012 2013 2014
1

1,5

2

2,5

3

3,5

4

4,5

5

Lecture recordings Example programs

Exercise sessions Programming project

Table 6. New course in comparison to the guidelines

Guideline Implementation in the new course

Objects first Objects are taught right from the beginning by presenting commonly used paradigms and then moving into objects.

Don’t start with
blank screen

The examples in the manuals start off as UML-examples of programs, that are gradually explained in code. Students
also use one of the examples as the base for programming tasks and start extending it.

Read code Students have to read code when they read the manuals, since the examples are shown as code and explained in detail.

Use “large”
projects

The first example that students see contains a combination of 4 classes. Students begin by building a program with only
one class (plus the executable class), but after the second week students have to start using multiple classes.

Don’t start with
“main”

The main()-function is generated by the IDE for students and it is emphasized that students do not have to understand
how it works. They are only told, that they can run a program with it and that the concepts are taught later.

Don’t use
“Hello World”

“Hello World” is used as a test that students can log into the visual learning environment (VLE) system and can run
their project. Printing one line is the easiest method of testing the system and it is not required to understand the code.

Show program
structure

The program structure is made visible by showing the UML solution of it pre or post programming. In the fifth week,
students have to construct their own UML class diagrams to complete the weekly exercise.

Be careful with
the user
interface

The graphical interface is presented and taken into use only after the students have adequate understanding of objects.
The emphasis remains in the program logic, a satisfactory application is required before extra points from GUI are
credited. The restriction aims to minimize the GUI polishing in the expense of application logic.

videos were uploaded to YouTube in the preceding week. In
Figure 2 one can note how students were watching videos on few
days before exercises on the first period. After the exam week, in
the second period the videos were watched several days before
exercise session. The last exercises were held on December 1st
but the students used the videos even after that. The statistics on
YouTube illustrate how videos were watched while the students
were finishing the course. The videos helped students to complete
the course project and revise material for the exam on December
17th.

Figure 3 presents the number and percentage of redone course
programming projects. The redone projects were not accepted by
the teacher and needed revision. The current teacher started to
lead the course in 2010, and the programming projects were only
checked by running the program and reviewing the code. In 2011
the memory leaks were also checked and thus the redone
percentage skyrocketed. In 2012 and 2013 students were taught
throughly to check for memory leaks, decreasing the number of
redoes. The change of programming language from C++ to Java
in 2014 removed the memory management problems. However,
the use of GUI and the exception handling of Java introduced new
difficulties to students. Besides the challenges set by the
technology, the teacher added structural requirements. The
required program structure had the source code divided into
reasonable classes and modules and the documentation needed to
be in line with the code. With all these changes the redone
percentage was still lower than in previous years.

While some students completed the course project, there still
remained problems with final grades. A major problem in the
course was that not all enrolled students got a grade (Figure 4).
The 100% grading is not possible but after the revision
approximately half of the enrolled students got a grade. The
number of students who enroll but do not start the course has
decreased over the years. 2014 was the first year when all the
students that returned the project or exam also got a grade. On
previous years some students quit the course after the completion
of programming project or exam.

The creation of new course materials required time as the
manuals were written from scratch and as the programming
language was changed no parts from old videos could be used and
also new videos were made from scratch. Table 9 presents the
teaching hours that were required from the teacher. On one hand

time spent in exercises increased as was predicted when changed
to flipped classroom method, but on the other hand lecturing took
no time and evaluating course projects was faster. The overall
time usage was 16 hours less than on previous year – when
considering only teaching hours, not the time spend on creating
new materials, which can be then used next years. The creation of
12.3 hours of video material took 36.5 hours of work.

From the student’s point of view, the course had some
successful parts but there still remained aspects to improve. The
incremental exercises, the project and video lectures got positive
feedback, as noted by a student in the official course feedback
“Project and exercises were successful, one could actually do
something else than calculators (i.a. exercises with graphical user
interface)” and “The video lectures were a great invention,
especially in teaching programming. They made the schedule
adjusting possible”. The inquiry about improvements provided a
wish, that “The open data services should be utilized more (XML
and especially other formats). In overall this course is very good
as a whole”. There was no negative feedback about using open
data as a data source for the programs.

The negative feedback did not emphasize the course’s aspect
but mainly the pacing “Why can’t there be any useful programs
from the beginning? The UML diagrams were taught too fast, I
don’t think I understood them well enough”, which suggests that
the parts that were considered simpler and not in the main focus
were skimmed through too fast. The grading also received some
feedback, that “Currently the course grading measures the
amount of time used”. This feedback can be seen in both positive
and negative light, since Hirschmann [26] states, that repeating
increases the learning results. In this context the feedback is
negative, since a course grade should indicate how much the
student learned and not how much student used time to learn the
topics.

 5. DISCUSSION

 5.1 Research questions
In the beginning we set a research question what are the

existing recommendations to teach fundamentals of object-
oriented programming and how they suited our course? We argue
that we got a vision of how to construct this kind of course. When
evaluating the results, we concentrated more on the feedback

Table 9. Overall time in hours used by the teacher

Year Exercises Evaluating
projects

Lecturing
Whole
course

2013 12.5 23.5 17.5 88.5

2014 29.5 18 0.5 72.5

Figure 2. Number of daily views of course videos in YouTube.

Figure 3. Number of returned and redone projects. Projects
can be done by one or two students.

Figure 4. Statistics on the course.

2010 2011 2012 2013 2014
0

10

20

30

40

50

60

70

80

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

Returned nothing
Started the course (achieved at least 1 point)
Failed to complete exam or project
Got a grade
Actually started the course and got a grade [%]

about if the course was meaningful and stimulating to students
instead of the learning results.

Based on the success of the implemented course we can
recommend, that flipped classroom method suits well to teach
programming. Students felt comfortable when they were
familiarizing theory before coming to classroom to test newly
learned theories in practice. Also Java and JavaFX-based GUI
programs were a working combination to teach object-oriented
programming. Besides excellent student feedback, the responsible
teacher was satisfied with the new teaching methods, learning
outcomes and the overall setup, while there were few problems in
pacing and course grading.

The use of open data has been limited in the university level
and programming courses and we could not find much research
about the topic. Students found the use of open data similar to any
other dataset and it was not found as a hindrance and in the future
students can be used to curate and validate existing data as well,
providing a meaningful symbiosis as suggested in [5]. The benefit
of open data is that students felt doing something useful – as
stated in the previous section – especially with GUI programming
where they created programs they use in their everyday life with
real life data, and it increased their motivation. Thus, we can argue
that open data is useful in teaching.

In a nutshell the new course focused on three new key points:
• Flipped classroom method
• Java and JavaFX -based programs
• Utilization of real-life open data sources

In our experience all key points were successful and can be
recommended to be used when developing an object-oriented
programming course. The course grading and pacing were local
problems, which do not affect these recommendations.

 5.2 Improvements for the next year
The biggest problem we faced during this first round with the

new course was the grading. As the average grade increased from
2.5 to 4.3 and although students liked the course and did their
tasks well, the grading allowed them to have higher grades than
their skills deserved. In the next year the requirements for the
higher grades can be increased.

Figure 4 illustrated how the number of students who started the
course but did not get grade had increased during the last three
years. The reasons behind this trend are not clear. Some students
have reported to find out that they do not need the course for their
curricula and they drop it, some just vanish in the middle. Those
students who start the course should be motivated to finish it too.

By observing the course and student’s struggles, the teacher
was able to point out three suggestions for improvements. The
first problem was the disconnection between exercises and
readable theory material, students were not able to find extensive
theory package about the week’s exercise problem. This suggests
that the manuals should be integrated more closely to the
exercises and videos. Second improvement is to increase the
number of UML exercises. The students did not get much practice
with the diagrams and some of the object-oriented understanding
is easier to learn through visualization [33]. The third
improvement is to add mandatory weekly quizzes (suggested by
[60], see also [9]) before the exercises to ensure that students have
studied the theory. The quizzing increases the probability, that
students use time to prepare with the material and the quizzes can
also serve as the point of origin and adjustments for the discussion
in-class [60].

 5.3 Limitations and validation of the study
Scientific studies have always some limitations [31]. Meyer

[41] list objectivity as the first element of validity and reliability.
To gain objective results we utilized three authors with different
views on the data so that any biased construct could be identified
and removed. To achieve the second element, construct validity,
we utilized data gathered from 5 years so that we can identify
changes in trends, not only yearly fluctuation. The utilization of
several researcher and data from several years also helped to
tackle the problem of internal validity, the third element in the list
of Mayer's. To generalize, one has to remember that these findings
are only relevant in the domain of teaching of programming in the
university level and in other areas they are only as
recommendations. What comes to the Meyer's reliability we can
argue that our study is in line with the previous research.

The major limitations in this study were the lack of control
group, multiple simultaneous changes and the individual
preferences of teacher and students. While the lack of control
group is natural to case study method, it would have been
necessary to enable a comparison between the used methods, the
comparison between years is not as extensive. The multiple
simultaneous changes in the course did not produce negative
feedback but it is difficult to state, which changes affected the
most. The individual preferences of the teacher and students cause
the study to be biased; it cannot be said if the changes would have
been as successful a year after or a year before nor can be stated
that a different teacher would have gotten the same results [2].

Multiple research papers suggest, that flipped classroom
method influence the learning results in the course positively.
When compared to the traditional lecturing, students found the
flipped classroom to be more supportive to their individual
learning styles. The quantitative data also suggests that students
found the lecturing method more satisfying and the level of
understanding was better, as is indicated by the success rate in
course project.

 6. CONCLUSION
This article studied how a university level object-oriented

programming course can be constructed. The literature suggested
that flipped classroom teaching method is suitable when teaching
programming and the experience gained in this study supports
these findings. Students gave very positive feedback to the flipped
classroom.

Besides teaching methods the programming language was
changed and all the material, weekly exercises, programming
project, and exam were redesigned. Although basically everything
was changed the course did not meet any major problems –
though there is always room for improvements and we are going
to continue to improve the course during the next semester. It
seems that for example quizzes before classroom exercises would
improve the going through of material as now some students came
to classroom without beforehand preparations.

The utilization of open data in the exercise tasks and
programming project got also positive feedback and we aim to
increase the amount of data sources used in various programming
courses. This ties teaching tighter to real-life material and thus
reduces the gap between educational and industrial environments.

During the next semester we are going to replicate the study
with another course to gain more experience on how repeatable
are the results.

Acknowledgements
We would like to thank Liikennevirasto and FUUG for supporting
this study.

 7. REFERENCES
[1] Baldwin, D. 2015. Can We “Flip” Non-Major

Programming Courses Yet? Proceedings of the 46th ACM
Technical Symposium on Computer Science Education
(New York, NY, USA, 2015), 563–568.

[2] Bartlett, R.L. 1996. Discovering diversity in introductory
economics. The Journal of Economic Perspectives. (1996),
141–153.

[3] Bennedsen, J. and Caspersen, M.E. 2004. Teaching object-
oriented programming-Towards teaching a systematic
programming process. Eighth Workshop on Pedagogies
and Tools for the Teaching and Learning of Object
Oriented Concepts. Affiliated with 18th European
Conference on Object-Oriented Programming (ECOOP
2004) (2004).

[4] Bishop, J.L. and Verleger, M.A. 2013. The flipped
classroom: A survey of the research. ASEE National
Conference Proceedings, Atlanta, GA (2013).

[5] Bradley, J.-C., Lancashire, R.J., Lang, A.S. and Williams,
A.J. 2009. The Spectral Game: leveraging Open Data and
crowdsourcing for education. Journal of Cheminformatics.
1, 1 (2009), 9.

[6] Burton, P.J. and Bruhn, R.E. 2003. Teaching programming
in the OOP era. ACM SIGCSE Bulletin. 35, 2 (Jun. 2003),
111.

[7] Capretz, L.F. 2003. A brief history of the object-oriented
approach. ACM SIGSOFT Software Engineering Notes. 28,
2 (Mar. 2003), 6.

[8] Chen, W.-K. and Cheng, Y.C. 2007. Teaching Object-
Oriented Programming Laboratory With Computer Game
Programming. IEEE Transactions on Education. 50, 3
(Aug. 2007), 197–203.

[9] Cicirello, V.A. 2009. On the Role and Effectiveness of Pop
Quizzes in CS1. Proceedings of the 40th ACM Technical
Symposium on Computer Science Education (New York,
NY, USA, 2009), 286–290.

[10] Cooper, S., Dann, W. and Pausch, R. 2003. Teaching
objects-first in introductory computer science. Proceedings
of the 34th SIGCSE technical symposium on Computer
science education (New York, NY, USA, 2003), 191–195.

[11] Culwin, F. 1999. Object imperatives! SIGCSE Bull. 31, 1
(1999), 31–36.

[12] Desouza, K.C. and Bhagwatwar, A. 2012. Citizen Apps to
Solve Complex Urban Problems. Journal of Urban
Technology. 19, 3 (Jul. 2012), 107–136.

[13] Dingle, A. and Zander, C. 2000. Assessing the ripple effect
of CS1 language choice. J. Comput. Sci. Coll. 16, 2 (2000),
85–93.

[14] Ehlert, A. and Schulte, C. 2010. Comparison of OOP first
and OOP later: first results regarding the role of comfort
level. Proceedings of the fifteenth annual conference on
Innovation and technology in computer science education
(New York, NY, USA, 2010), 108–112.

[15] Ehlert, A. and Schulte, C. 2009. Empirical comparison of
objects-first and objects-later. Proceedings of the fifth
international workshop on Computing education research
workshop (Berkeley, CA, USA, 2009), 15–26.

[16] Ferrara, V., Macchia, A., Sapia, S. and Lella, F. 2014.
Cultural heritage open data to develop an educational
framework. Information, Intelligence, Systems and
Applications, IISA 2014, The 5th International Conference
on (Chania Crete, Greece, Jul. 2014), 166–170.

[17] Fink, A. 2013. How to conduct surveys: a step-by-step
guide. SAGE.

[18] Gable, G.G. 1994. Integrating case study and survey
research methods: an example in information systems.
European Journal of Information Systems. 3, (1994), 112–
126.

[19] Gannod, G.C., Burge, J.E. and Helmick, M.T. 2008. Using
the Inverted Classroom to Teach Software Engineering.
Proceedings of the 30th International Conference on
Software Engineering (New York, NY, USA, 2008), 777–
786.

[20] Gartner Says Worldwide Video Game Market to Total $93
Billion in 2013: 2013.
http://www.gartner.com/newsroom/id/2614915. Accessed:
2015-03-30.

[21] Gehringer, E.F. and Peddycord, B.W., III 2013. The
Inverted-lecture Model: A Case Study in Computer
Architecture. Proceeding of the 44th ACM Technical
Symposium on Computer Science Education (New York,
NY, USA, 2013), 489–494.

[22] Geser, G. and Salzburg Research Forschungsgesellschaft
2007. Open educational practices and resources: OLCOS
Roadmap 2012. Salzburg Research.

[23] Herala, A., Vanhala, E. and Nikula, U. 2015. Olio-
ohjelmointi Javalla, versio 1.0. LUT.

[24] Herala, A., Vanhala, E. and Nikula, U. 2015. Olio-
ohjelmointi käytännössä käyttäen hyväksi avointa tietoa,
graafista käyttöliittymää ja karttaviitekehystä, versio 1.0.
LUT.

[25] Hiltunen, K., Latva, S. and Kaleva, J.-P. 2013.
Peliteollisuus – kehityspolku. TEKES.

[26] Hirschmann, W.B. 1964. Profit From the Learning Curve.
Harvard Business Review. 42, 1 (1964), 125–139.

[27] Horton, D. and Craig, M. 2015. Drop, Fail, Pass, Continue:
Persistence in CS1 and Beyond in Traditional and Inverted
Delivery. Proceedings of the 46th ACM Technical
Symposium on Computer Science Education (New York,
NY, USA, 2015), 235–240.

[28] Howatt, J. 1995. A project-based approach to programming
language evaluation. ACM SIGPLAN Notices. 30, 7 (Jul.
1995), 37–40.

[29] Jan Hylén 2006. Open Educational Resources:
Opportunities and Challenges. Organisation for Economic
Co-operation and Development.

[30] Kasurinen, J. and Nikula, U. 2007. Lower dropout rates
and better grades through revised course infrastructure.
Proceedings of the 10th IASTED International Conference
on Computers and Advanced Technology in Education
(Beijing, China, 2007), 152–157.

[31] Kitchenham, B.A., Pfleeger, S.L., Pickard, L.M., Jones,
P.W., Hoaglin, D.C., Emam, K. El and Rosenberg, J. 2002.
Preliminary guidelines for empirical research in software
engineering. IEEE Transactions on Software Engineering.
28, 8 (Aug. 2002), 721–734.

[32] Kölling, M. 1999. The problem of teaching object-oriented
programming, Part I: Languages. Journal of Object-
Oriented Programming. 11, 8 (1999), 8–15.

[33] Kölling, M., Quig, B., Patterson, A. and Rosenberg, J.
2003. The BlueJ system and its pedagogy. Computer
Science Education. 13, 4 (2003), 249–268.

[34] Kölling, M. and Rosenberg, J. 2001. Guidelines for
teaching object orientation with Java. SIGCSE Bull. 33, 3
(2001), 33–36.

[35] Lage, M.J., Platt, G.J. and Treglia, M. 2000. Inverting the
Classroom: A Gateway to Creating an Inclusive Learning
Environment. The Journal of Economic Education. 31, 1
(Jan. 2000), 30–43.

[36] Latulipe, C., Long, N.B. and Seminario, C.E. 2015.
Structuring Flipped Classes with Lightweight Teams and
Gamification. Proceedings of the 46th ACM Technical
Symposium on Computer Science Education (New York,
NY, USA, 2015), 392–397.

[37] Lockwood, K. and Esselstein, R. 2013. The Inverted
Classroom and the CS Curriculum. Proceeding of the 44th
ACM Technical Symposium on Computer Science
Education (New York, NY, USA, 2013), 113–118.

[38] Maher, M.L., Latulipe, C., Lipford, H. and Rorrer, A. 2015.
Flipped Classroom Strategies for CS Education.
Proceedings of the 46th ACM Technical Symposium on
Computer Science Education (New York, NY, USA, 2015),
218–223.

[39] March, S.T. and Smith, G.F. 1995. Design and Natural
Science Research on Information Technology. Decision
Support Systems. 15, 4 (1995), 251–266.

[40] Mason, G.S., Shuman, T.R. and Cook, K.E. 2013.
Comparing the Effectiveness of an Inverted Classroom to a
Traditional Classroom in an Upper-Division Engineering
Course. IEEE Transactions on Education. 56, 4 (Nov.
2013), 430–435.

[41] Meyer, C.B. 2001. A Case in Case Study Methodology.
Field Methods. 13, 4 (Nov. 2001), 329–352.

[42] Moravec, M., Williams, A., Aguilar-Roca, N. and O’Dowd,
D.K. 2010. Learn before Lecture: A Strategy That
Improves Learning Outcomes in a Large Introductory
Biology Class. CBE-Life Sciences Education. 9, 4 (Dec.
2010), 473–481.

[43] Open Definition - Open Definition - Defining Open in
Open Data, Open Content and Open Knowledge:
http://opendefinition.org/od/index.html. Accessed: 2015-
04-09.

[44] Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E.,
Bennedsen, J., Devlin, M. and Paterson, J. 2007. A survey
of literature on the teaching of introductory programming.
(2007), 204.

[45] Perkmann, M. and Schildt, H. 2015. Open data
partnerships between firms and universities: The role of
boundary organizations. Research Policy. 44, 5 (Jun.
2015), 1133–1143.

[46] Programming Language Popularity: 2014.
http://langpop.com/. Accessed: 2014-08-27.

[47] Raadt, M. de and Toleman, M. 2002. Language Trends in
Introductory Programming Courses. Proc. Informing
Science and IT Education Conference (2002).

[48] Raadt, M. de, Watson, R. and Toleman, M. 2004.
Introductory programming: what’s happening today and
will there be any students to teach tomorrow? Proceedings
of the Sixth Australasian Conference on Computing
Education - Volume 30 (Dunedin, New Zealand, 2004),
277–282.

[49] Raadt, M. de, Watson, R. and Toleman, M. 2003. Language
tug-of-war: industry demand and academic choice.
Proceedings of the fifth Australasian conference on
Computing education - Volume 20 (Adelaide, Australia,
2003), 137–142.

[50] Sadowski, C. and Kurniawan, S. 2011. Heuristic evaluation
of programming language features: two parallel
programming case studies. Proceedings of the 3rd ACM
SIGPLAN workshop on Evaluation and usability of
programming languages and tools (2011), 9–14.

[51] Sanders, K. and Thomas, L. 2007. Checklists for grading
object-oriented CS1 programs: concepts and
misconceptions. Proceedings of the 12th annual SIGCSE
conference on Innovation and technology in computer
science education (New York, NY, USA, 2007), 166–170.

[52] Schullery, N.M., Reck, R.F. and Schullery, S.E. 2011.
Toward solving the high enrollment, low engagement
dilemma: A case study in introductory business.
International Journal of Business, Humanities and
Technology. 1, 2 (2011), 1–9.

[53] The Joint Task Force on Computing Curricula ed. 2001.
Computing curricula 2001. J. Educ. Resour. Comput. 1, 3es
(2001), 1.

[54] The Transparent Language Popularity Index: 2014.
http://lang-index.sourceforge.net/. Accessed: 2014-08-27.

[55] Tietze, K.J. 2007. A Bingo Game Motivates Students to
Interact with Course Material. American Journal of
Pharmaceutical Education. 71, 4 (Aug. 2007), 79.

[56] TIOBE Software: TIOBE Index: 2014.
http://www.tiobe.com/index.php/content/paperinfo/tpci/ind
ex.html. Accessed: 2014-08-27.

[57] Toto, R. and Nguyen, H. 2009. Flipping the work design in
an industrial engineering course. Frontiers in Education
Conference, 2009. FIE’09. 39th IEEE (2009), 1–4.

[58] What makes data open? | Guides | Open Data Institute:
http://theodi.org/guides/what-open-data. Accessed: 2014-
12-10.

[59] Yin, R.K. 2002. Case Study Research: Design and
Methods. SAGE Publications.

[60] Zappe, S., Leicht, R., Messner, J., Litzinger, T. and Lee,
H.W. 2009. “Flipping” the classroom to explore active
learning in a large undergraduate course. American Society
for Engineering Education (2009).

	1. INTRODUCTION
	2. Related research
	2.1 Object-oriented versus other paradigms
	2.2 Programming language and IDE for object-oriented programming
	2.3 Flipped classroom method
	2.4 Open data in education

	3. Research process
	4. Case study
	4.1 The previous version of the course
	4.2 Needs for the change
	4.3 Selection of new tools, techniques and methods
	4.4 Created materials
	4.5 Syllabus for the new course
	4.6 Results

	5. Discussion
	5.1 Research questions
	5.2 Improvements for the next year
	5.3 Limitations and validation of the study

	6. Conclusion
	7. References

