
Goals and Principles for the Redesign of a Programming
Course

Erno Vanhala
University of Tampere
erno.vanhala@uta.f

Jussi Kasurinen
Lappeenranta University of Technology

jussi.kasurinen@lut.f

ABSTRACT
In this study it is discussed how programming courses have been
redesigned. Te article is based on three courses lectured during
academic years from 2005 to 2016. During these years several
modifcations and revisions were made,i such as moving a course
from Python 2 to Python 3,i another one from C++ to Java and in
one occasions updating the course to include the latest web
development concepts and technologies. Te frst course
included video lectures and the later two were upgraded to
utilize fipped classroom teaching method. From these revisions
the student feedback was collected and examined to gain
understanding on what ideas work and what do not. Te overall
results could be summarize in four key concepts: 1) provide
easy-to-use working environment 2) give students freedom,i 3)
fortify the frequency of key concepts and 4) separate theory to
pre-classroom learning and action to in-classroom learning.

CCS CONCEPTS
K.3.2 [Computer and Education]: Computer and Information
Science Education – computer science education.

KEYWORDS
programming,i object-oriented programming,i fipped classroom,i
redesign principles
ACM Reference Format:
X. X. 2018. Goals and Principles for the Redesign of a
Programming Course. In Proceedings of Te 2018 Workshop on
PhD Softare Engineering Education: Challenges, Trends, and
Programs (SWEPHD2018). ACM,i New York,i NY,i USA,i Article X,i 6
pages. htps:::doi.org:10.475:123XX

1 INTRODUCTION
Why bother changing a programming course unless you have
to? Te question is,i of course,i what is a good enough reason to
introduce changes which are likely to cause change resistance,i
increased efort,i and worse short term results [7]?

However,i as the passing rates of case courses have improved,i
a more fundamental question becomes interesting: whether the
students actually learn programming skills in the courses. Te
level of learning has not been studied much in the programming
education feld but,i for example,i a Bayesian Knowledge Transfer
algorithm has been proposed to ft to estimate the learning of
specifc programming structures [2,i14].

Te redesign process started in 2006 with an atempt to
remove observed problems in the Fundamentals of
programming,i CS1 (Case A). Similarly,i teaching methods became
interesting when it was observed how students appreciated
video lectures introduced in Case A. With Case B and C it was
developed further with fipped classroom method.

Te overall philosophy for revising the case courses has been
to make it easy for the students to download the programming
environment and start using it. We have a few aims in
improving programming courses: 1) reducing dissatisfaction,i 2)
increasing motivation and 3) estimating learning. In this article it
is reported the goals of the course redesigns.

2 RELATED RESEARCH
In this section related research is presented to introduce the
topics that are relevant when discussing the reasons and the
process of redesigning of a programming course.

2.1 Student motivation
Student motivation has raised considerable interest among the
researchers [3,i21]. Besides the hygiene factors – elements (e.g.
air conditioning or programming manual) that are not the actual
key components of the process,i but can greatly afect the success
of the task (e.g. ofce work or learning programming) – there
are also motivating things on learning,i which can greatly afect
on the actual course outcome [21].

For example,i the assignments and lectures on the course have
to be easy enough to be understandable for all,i but they also
should challenge the most advanced students. Students with less
IT skills tend to frustrate near the end of the course when
assignments get harder. On the other hand,i students with
existing programming skills are frustrated since they are not
challenged,i and are just required to participate. Tere are,i
however,i ways to detect frustration based on compilation logs
and time spent on Virtual Learning Environment (VLE) [22].
When a students get overly frustrated they can easily lose their
confdence [10] and will get a grade worse than their actual skill
level would indicate.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for proft or commercial advantage and that copies bear this notice and
the full citation on the frst page. Copyrights for third-party components of this
work must be honored. For all other uses,i contact the owner:author(s).
Te 2018 Workshop on PhD Softare Engineering Education: Challenges, Trends, and
Programs, September 17th, 2018, St. Petersburg, Russia

© 2018 Copyright held by the owner:author(s).

mailto:erno.vanhala@uta.fi

SWEPHD2018, September 2018, St. Petersburg RUS E. Vanhala et al.

In principle,i the students who have positive impression on a
subject tend to be motivated [21]. Motivated students also have a
positive perception of the subject and amount of practical work
[21]. In this sense,i it is obvious that these traits should be
supported,i by providing programming assignments,i which the
students fnd motivational [24].

2.2 Student dissatisfaction
Hygiene factors [11] are not widely studied in the area of
introductory programming,i but few studies can be found (e.g.
[13,i15]). Before a student can be motivated,i the basic hygiene
factors need to be present [11]. In programming courses these
Herzberg's hygiene factors include,i for example,i comfortable
learning environment and learning conditions. Te frst one
contains the lecture halls and computer classes,i and the later
material supporting the learning and students' time schedules.

When the hygiene needs and requirements are met,i the
motivational aspects become increasingly important to increase
the student satisfaction. Herzberg introduces 7 principles [11]
from which three can be easily modifed to be used in teaching
programming: 1) In the learning environment it is quite easy to
give the students access to the scores of one's programming
tasks. 2) When giving tasks to the students it is possible to give
several tasks covering diferent degree of difculty. 3) Access to
additional tasks providing deeper understanding to engage
advanced students in the course.

2.3 Course success measurement
Afer the course implementation has been carried out,i usually
the fnal survey has been given to the students. Based on this
feedback it is possible to pinpoint difcult parts of the course
topics and unsuccessful ideas or failed implementations.

Yet,i a course success measure should refect the actual
objective of course participation,i the learning of the course
contents. Te learning processes have been studied,i for example,i
from the point of view how novice programmers understand
programs [23],i how they structure their own code [5,i20],i and
how the programming knowledge can be measured – the
Bayesian Knowledge Tracing algorithm (BKT) [2,i6,i8] and
Adaptive Control of Tought - Rational (ACT-R) [1]. Te ACT-R
is focused on long-term learning,i skill acquisition,i and
deterioration while the BKT algorithm has been reported to have
a history of success in programming and algebra,i and thus the
BKT has been reported sufcient for skill mastery estimation [8].

Te principles of the BKT algorithm are outlined in Figure 1:
the prior knowledge (Ln) is taken into account when the
probability of learning the concept in question is calculated
(p(T)) to measure the student learning. As student repeats the
process,i the possibility of guessing the right answer (p(G)) and to
err even when the concept is learned (p(S)) are taken into
account. It has been estimated that repeating the process for six
times predicts the learning of the concepts in question in a
reasonable level.

Figure 1. Bayesian Knowledge Tracing algorithm [14].

2.4 Flipped classroom method
As technology develop it also opens new methods to improve
teaching methods. Te core idea of fipped class room is to let
students to study theory on their own outside the classroom and
concentrate on actual doing in class with teacher. Tis method is
already used in computer science on various course [12,i16].
Flipped classroom can also be used in other areas from primary
school to university level education although it originated from
economics [4].

3 RESEARCH METHOD
Te present study started with two research questions: 1) When
should a programming course be revised? and 2) What should be
taken into account when redesigning?

In general the study had three objectives: First to demonstrate
how the collected data can be used to pinpoint problems and
development needs in the course. Second,i to report the goals and
principles for the course redesign. Te third objective was to
assess how programming assignments could be developed to
take into account the developed principles. In this sense,i the
study has the characteristics of both natural and design science
[17] but it is reported as a case study since the case study
methods [25] ft well the study and,i in general,i the courses
referred to in the study represent case studies with literal
replication [25].

Te data used in the study comes from three courses taught in
a Finnish university,i between 2005 and 2016. Each course has
been concluded with a fnal survey that has been distributed to
all students enrolled in the course. Te fnal surveys have
included quantitative questions like the difculty and usefulness
of the diferent course elements but also open questions to allow
the students to express their feelings and concerns about the
course.

Te analysis has been based on both quantitative and
qualitative methods. In particular,i the BKT analysis is based on
quantitative measurements and statistical analysis while the
problem analysis has been based more on the qualitative data
acquired from multiple sources. For example,i problematic
weekly assignments have been identifed by analyzing the points
each assignment got but deciding about the changes required by
each assignments has been estimated case by case by the
designer even though the student problem reports and feedback
have helped a lot in some cases.

Goals and Principles for the Redesign of a Programming Course SWEPHD2018, September 2018, St. Petersburg RUS

4 CASE STUDIES
Te next chapters describe three case courses,i their descriptions
and upgrades done to them.

4.1 Course descriptions
Tis study utilizes three programming courses. Table 1 lists key
features for the courses. All the courses have positioned in
bachelors level,i but also not computer science students from
masters level have taken part of the courses.

Table 1: Key features for the case courses
Case Name Key changes Data

A Fundamentals of
programming

Introduction of lecture
videos,i change from
Python 2 to Python 3,i
programming manual

2006 –
2015

B Object-oriented
programming

Change from C++ to Java
and change from lecture
videos to fipped classroom,i
programming manual

2010 –
2016

C Webbed
applications

Introduction of fipped
classroom and updating all
the materials

2015

For Case A,i a larger Python programming manual was writen
to replace a course book,i since at the time there was no book
available in the local language. When the course was updated to
Python 3,i the number of weekly programming tasks was
increased and the format of the programming project was
changed from GUI-based “motivational” project to text- and
calculation based real-life problem.

Case B followed examples of Case A as it had video lectures,i
but in the end it was decided to change the programming
language of the course from C++ to Java and in the same time to
drop the traditional lectures-exercises-exam paradigm and move
to the fipped classroom. In addition,i two programming manuals
were writenn one for Java in general and one for GUI-
programming in Java.

Similarly,i Case C was transformed to fipped classroom
method and all the course materials were updated to refect the
fast development of web programming techniques.

All the case courses consisted of 12–14 weeks depending on
the year it was lectured. All the courses followed the format
where besides the introductory lecture,i each week a new concept
was introduced and the previous topics were utilized with the
newly learned skills.

4.2 Changes in the course

4.2.1 Hygiene factors
Te frst major observation was the students were complaining
about very basics on case courses,i for example “Where do I get
the needed sofware?” or “How do I return my assignments?”.

One of the key principles when revising and improving
courses was to remove these hygiene factor obstacles. Python

was selected as the programming language for Case A as it can
be easily installed on Windows,i Mac and Linux computers and it
already includes IDLE as IDE. IDLE itself is easy-to-use and does
not throw everything to students at once,i and it has a minimalist
and simple look,i which replicates between the diferent
platforms,i which suits CS1 where the students meet
programming code for the very frst time.

With Case B it was also thought how to give students the
suitable IDE with minimal work to be done. As Case B had also
GUI-programming and the JavaFX was chosen as the GUI-toolkit
it was decided to use NetBeans as the IDE as both JavaFX and
NetBeans were bundled together from the developers of Java.

As web developing can be done with prety much every tool
available,i and the course required both backend and frontend
development,i the Case C was a diferent scenario. Te most
pressing issue was the server side systemn how this should be
addressed in the university infrastructure,i since the system had
to be usable by the students,i while still retaining a certain level
of cyber security. In this case,i the solution was to use a cloud
platform that enabled the option to run the student-generated
code without the need of installing web server,i database and
various libraries. Additionally,i some students decided to use
their own environments and followed guideline videos on how
to install the necessary packages to Linux or Mac.

Case A and half of the Case B utilized VLE for the assignment
submission and grading,i since the course had thousands of
student-submited works. Since this VLE could not manage
graphical user interfaces,i the second half of the Case B and Case
C applied the traditional teacher grading,i but by allowing the
students to demonstrate their solutions with quick
demonstration at the exercise event,i or by sending a video link
explaining what they had done. On later implementations,i a
peer review approach by other students was also applied.

Teaching materials were provided for every case course. With
Case A this meant the programming manual,i style guide and
Python installation manual with lecture examples and videos.
Case B had videos covering all the course topics,i two writen
manuals and code examples available in a git repository. Case C
had videos covering all the course topics,i short manual
presenting the most important techniques and tools used in web
programming and code examples in a git repository.

One of the usually overlooked hygiene factors is the exam.
When learning to program it is normal to ask students to write a
short program in the exam,i yet when the exam is pen and paper,i
it does not refect to the real world where the students would
have compiler messages and manuals with them. To avoid this
issue Case B introduced online exam and Case C had no exam at
all,i but an essay to show how students had learned their new
skills. In the end Case A also introduced an online exam for
programming as it would decrease the manpower needed to
grade all the exams.

4.2.2 Changes done to the weekly programming
assignments
With all cases weekly programming assignments were
constructed so that they had usually 5 smaller tasks thus

SWEPHD2018, September 2018, St. Petersburg RUS E. Vanhala et al.

students were able to gain 5 points from one week. With Case A
example solutions were provided and they were coded to show
how style guide help to build easy-to-read programming code.

With all cases the number of weekly assignments were also
increased – though some tasks were divined into two smaller
tasks – thus students had to repeat the key structures and
concepts at least six times as suggested. Although one has to
note that techniques presented in the end of the course could not
be covered such many times.

Te BKT analysis was done with the program source codes
retrieved from the VLE database afer the course,i and the prior
programming knowledge of the students was estimated with an
initial survey in the beginning of the course. When the
programming assignments were developed in 2006 it was only
aimed at reasonable assignments,i and only few programming
structures met the BKT analysis requirements. Te overall
outcomes were up 10–20% on all measured categories.

Other positive side of the increased number of assignments
was that average students did not need to do all the fve tasks
per week,i but students with advanced skills had more to do. Te
last task is set to be the hardest one,i so the students who were
interested in programming could get more challenge when they
wanted.

Students focus on tasks that are benefcial to them,i that is,i
tasks giving points to them. All the case courses had previously
weekly exercises that were voluntary and there were no points
given from a successful solutions. When the case courses were
revised all of them shif to a model where students could get
points from all the work they do for the course and the fnal
grade was calculated from the points got from weekly
assignments,i course projects,i exam,i and other parts of the
course.

4.2.3 Course project
All of the cases have larger programming project in the end of
the course. Te previous version of the Case A was taught with
C programming language and its course project was transformed
to the frst implementation of Python course. Te text-based
project was not seen up-to-date and it was then changed GUI-
based Turtlet programming project. Although it was supposed to
be motivating,i students gave mixed feedback,i similarly as
observed for example by [18]. Turtlet had limitations on the
usefulness and student creativity as well as maintenance
problems,i so a new project was to developed for the course.

With Python 3 the programming project used more
engineering approach. First theme on the project was to
calculate district heating systems. Te project was approximately
double the size of the old Turtlet version,i yet it did not yield
complaints more than the Turtlet. Nor was it completely success.
Te project required a lot of precise mathematical calculation
that the students found hard to get right. Te project was later
moved to work with temperatures,i data fles and generating svg-
graphics.

Case B had had various humorous – game-like – projects
when it was implemented with C++. Te projects required to

understand the concepts of C++ but they did not refect to real
problems or were not in an area,i which would have been useful
experience for the future. When Case B was transformed to Java
the course project was also redesigned.

Te new project included parsing publicly available open data
sources and building a graphical user interface to visualize the
data on a map overlay. Tis gave students a feel of working with
the real-world problems,i tools and data.

With Case C the course project was not focusing on any
specifc area. As the Case C is more advanced course than A or
B,i it was decided to give students more creativity and
responsibility with the course project. Tere were elements that
gave certain amount of points and combining several elements
students could get the number of points they wanted to get
certain grade. For example creating responsive design gave 5,i
utilization of cache gave 3 and front-controller design patern
gave 3 points.

4.2.4 Lectures vs. fipped classroom
Te Case A provided video lectures from the beginning of
Python era. Students found the videos very useful. Also with
Case B video lectures were provided from the beginning of data
collection period. When Case B was revised it started to use
fipped classroom method. Similarly Case C was revised to
fipped classroom when data collection started with new
administrating lecturer.

Both video lectures and fipped classroom seem to be suitable
when teaching programming. Students have given feedback on
how they value the opportunity to watch theory when they have
time and repeat it as many times they need.

With fipped classroom,i although the initial cost of creating
new course format is high it later gives more man power to be
used in classroom teaching then benefting the students.

5 DISCUSSION
In the beginning two research questions where set: 1) when
should a programming course be revised? 2) what should be
taken into account when redesigning? Here the questions are
discussed based on the experience gained from three cases
described in the previous chapter.

5.1 When should a programming course be
revised?
Te present study explored the reasons for initiating the
programming assignment revision and found four key reasons
for the revision:

Problems with existing assignments. Te students
reported diferent kind of defects in the assignments over a
number of years which indicated that there were problems with
the assignments. Collected data suggests that problems in the
programming assignments reduced the student motivation to
complete them,i and thus such problems became the hygiene
problems in these courses. Tus,i to avoid dissatisfaction –

Goals and Principles for the Redesign of a Programming Course SWEPHD2018, September 2018, St. Petersburg RUS

hygiene problems – among the students,i the programming
assignments should not pose undue problems for the students.

Mismatch between the students and the assignments.
Even though the assignments would not have any problems,i the
students may not be motivated by them. Collected data suggests
that the students were concerned about the usefulness of the
assignments they had to complete and especially the game-like
project with graphical user interface (Case A) had been criticized
every year it was used. Tus,i to keep the programming
assignments motivating for the students they should be aligned
with the student experiences and expectations as the student
body evolves. Tis observation is in line with the earlier work
from for example [3].

Technological development. Programming languages and
tools develop quickly. With Case A the change from Python 2 to
3 required to check all the material and assignments in the
course. In Case B,i where the programming language changed,i all
the assignments needed to be redone. And web programming
(Case C) changes all the time so the revision of everything was a
mandatory task to be carried out at least once in fve years.

Pedagogical development. Te teaching methods and tools
are improved all the time. Where PowerPoint slides came in the
90s,i this millennium has given video lectures and fipped
classroom. Teachers need to match the new ways of studying
and thus courses need to be revised also from pedagogical point
of view. Te traditional lecture-exercise-exam model can be
replaced with modern ways where students get more individual
time from teachers. With Case A video lectures where provided
all the time with Python course and with Case B and C the
transition to fipped classroom was carried out when courses
where revised. Both the video lectures and fipped classroom
method generated praises from students.

5.2 What should be taken into account
when redesigning?
Te response to the second research question of what should be
taken into account in the redesign is twofold. Te problems
leading to the revision should,i of course,i be fxed but a revision
provides also an opportunity to improve the course. In the
present study the revisions made it possible to assure that the
assignments were ft estimating the learning outcomes of the
course with the BKT algorithm. Overall the following design
principles for programming assignment revision can be pointed:

• Motivating assignments refecting the real world
problems,i useful for the studies as well as the future
careers and assignments as engineers

• Give an option to do more assignments when the topic
requires them

• Repeat all the main programming structures at least six
times in the weekly assignments to allow accurate
mapping of the learned topics with BKT or ACT-R
algorithm

• Follow both the technological development and
pedagogical development to be able to utilize up-to-
date tools and methods

5.3 Retrospective
Te reported modifcations to the programming courses have
been made during the years 2005 – 2016. Afer few years of cool
down it can now be discussed what parts of improvements were
success and what parts still require work.

With Case A the most difcult part has been developing a
programming project that would be easy enough for beginners
but would also let students to show their skills if one wants to.
Tis is an issue that has no real solutions,i but it can be iterated
towards project that would have all the necessary parts required
and still be easy and useful.

Case B failed in grading for the frst implementation afer
revision. Points were provided too easily and students got high
grades – although they did good work. Some example solutions
were also not perfect and issues arose when JavaFX required
special version of Java,i which was not installed by default. Tese
hygiene factors were then hot-fxed,i but would still require more
work to be done.

Te biggest issue with Case C is the number of tools and
techniques web development has. In the course dozen of
diferent techniques are introduced to students and then they do
not have enough time to repeat newly learned skills. Tis
problem would be solved by extending the course somehow or
by spliting it into two separated courses.

With all the cases teachers are required to do a lot of grading.
With Case B it was changed so that students peer reviewed
programming project so that teachers could focus more on
teaching. Tis similar method could be considered also for Case
A and C.

5.4 Limitations and validity of the study
As this is a partly qualitative study,i the observations presented
here are not strong,i confrmatory results,i but guidelines and
sophisticated suggestions on things that have been discussed in
this article [9]. Although we have triangulated the data against
quantitative data sources,i this study is not free from possible
bias towards any direction that has been missed. Bias is
addressed in the following ways. We have followed the three
principles of data collection [25]: we have used multiple sources
of evidence,i created a multicase study [19],i and maintained a
chain of evidence. We have also triangulated our data from
multiple sources (e.g.,i student surveys and feedback,i VLE
program database,i and grading data),i both authors have
participated in the analysis,i we have used diferent theories,i and
we have used both qualitative and quantitative methods to
analyze the data.

6 CONCLUSION
Tis article presented three university level case courses,i which
had all been revised and improved. When revising a course one
should note,i for example,i to follow the latest technical and
pedagogical tools and methods,i make sure students repeat
learned tasks at least six times and motivate students with real-
life assignments.

SWEPHD2018, September 2018, St. Petersburg RUS E. Vanhala et al.

Tis is a latest wrap up of the on-going improvement of these
three courses. Te shif from lecture room lectures to video
lectures and fipped classroom method has already widely begun,i
but there is still much to do. For example,i only Case A was a
mass course and only Cases B and C where fipped. In the future
it is required to study whether same methods can be used when
fipping a mass course.

7 REFERENCES
[1] J. R. Anderson and C.D. Schunn. 2000. Implications of the

ACT-R Learning Teory: No Magic Bullets. Advances in
instructional psychology 5.

[2] Ryan Baker,i Albert T. Corbet,i and Vincent Aleven. 2008.
More Accurate Student Modeling through Contextual
Estimation of Slip and Guess Probabilities in Bayesian
Knowledge Tracing. 406–415.

[3] Tifany Barnes,i Eve Powell,i Amanda Chafn,i and Heather
Lipford. 2008. Game2Learn: improving the motivation of
CS1 students. In Proceedings of the 3rd international
conference on Game development in computer science
education,i 1–5.

[4] Jacob Lowell Bishop and Mathew A. Verleger. 2013. Te
fipped classroom: A survey of the research. In ASEE
National Conference Proceedings, Atlanta, GA.

[5] Janet Carter,i Kirsti Ala-Mutka,i Ursula Fuller,i Martin Dick,i
John English,i William Fone,i and Judy Sheard. 2003. How
shall we assess this? In Working group reports from ITiCSE
on Innovation and technology in computer science
education,i 107–123.

[6] Cristina Conati,i Abigail Gertner,i and Kurt VanLehn. 2002.
Using Bayesian Networks to Manage Uncertainty in
Student Modeling. User Modeling and User-Adapted
Interaction 12,i 4 (November 2002),i 371–417.
DOI:htps:::doi.org:10.1023:A:1021258506583

[7] P.D.I. Elrod and D.D. Tippet. 2002. Te “death valley” of
change. Journal of Organizational Change Management 15,i
3 (2002),i 273–291.

[8] Kevin A. Gluck. 2004. Knowledge Tracing for Complex
Training Applications: Beyond Bayesian Mastery
Estimates. 383–384.

[9] Nahid Golafshani. 2003. Understanding Reliability and
Validity in Qalitative Research. Te Qualitative Report 8,i
4 (2003),i 597–606.

[10] Stuart Hansen and Erica Eddy. 2007. Engagement and
frustration in programming projects. In Proceedings of the
38th SIGCSE technical symposium on Computer science
education,i 271–275.

[11] Frederick Herzberg. 1968. One more time: How do you
motivate employees? Harvard Business Reviet 46,i 1 (1968),i
53–62.

[12] Diane Horton and Michelle Craig. 2015. Drop,i Fail,i Pass,i
Continue: Persistence in CS1 and Beyond in Traditional

and Inverted Delivery. In Proceedings of the 46th ACM
Technical Symposium on Computer Science Education
(SIGCSE ’15),i 235–240.
DOI:htps:::doi.org:10.1145:2676723.2677273

[13] Jussi Kasurinen and Uolevi Nikula. 2007. Revising the
First Programming Course - Te Second Round. 92–101.

[14] Jussi Kasurinen and Uolevi Nikula. 2009. Estimating
programming knowledge with Bayesian knowledge
tracing. In Proceedings of the 14th annual ACM SIGCSE
conference on Innovation and technology in computer
science education,i 313–317.

[15] Jussi Kasurinen,i Mika Purmonen,i and Uolevi Nikula. 2008.
A Study of Visualization in Introductory Programming.
181–194.

[16] Mary Lou Maher,i Celine Latulipe,i Heather Lipford,i and
Audrey Rorrer. 2015. Flipped Classroom Strategies for CS
Education. In Proceedings of the 46th ACM Technical
Symposium on Computer Science Education (SIGCSE ’15),i
218–223. DOI:htps:::doi.org:10.1145:2676723.2677252

[17] S.T. March and G.F. Smith. 1995. Design and Natural
Science Research on Information Technology. Decision
Support Systems 15,i 4 (1995),i 251–266.

[18] William Isaac McWhorter and Brian C. O’Connor. 2009.
Do LEGO® Mindstorms® motivate students in CS1?
SIGCSE Bull. 41,i 1 (2009),i 438–442.

[19] Christine B. Meyer. 2001. A Case in Case Study
Methodology. Field Methods 13,i 4 (November 2001),i 329–
352. DOI:htps:::doi.org:10.1177:1525822X0101300402

[20] Keir Mierle,i Kevin Laven,i Sam Roweis,i and Greg Wilson.
2005. Mining student CVS repositories for performance
indicators. In Proceedings of the 2005 international
torkshop on Mining softare repositories,i 1–5.

[21] Mathew Mitchell,i Judy Sheard,i and Selby Markham. 2000.
Student motivation and positive impressions of
computing subjects. In Proceedings of the Australasian
conference on Computing education,i 189–194.

[22] Ma. Mercedes T. Rodrigo and Ryan S.J.d. Baker. 2009.
Coarse-grained detection of student frustration in an
introductory programming course. In Proceedings of the
fifh international torkshop on Computing education
research torkshop,i 75–80.

[23] B Simon,i R Lister,i and S Fincher. 2006. Multi-Institutional
Computer Science Education Research: A Review of
Recent Studies of Novice Understanding. 12–17.

[24] Alan L. Tarp. 1981. Geting more oomph from
programming exercises. In Proceedings of the ttelfh
SIGCSE technical symposium on Computer science
education,i 91–95.

[25] R.K. Yin. 2002. Case Study Research: Design and Methods
(3rd edition ed.). SAGE Publications.,i Tousand Oaks,i CA.

